
Elias B. Khalil — 18/10/21

Learning in Exact Solvers
MIE1666: Machine Learning for Mathematical Optimization

Machine Learning for

Combinatorial Optimization

——COMPETITION 2021——

Did I forget to hit
record? Please

remind me!

Branch & Bound for Integer Optimization

2

Select Node
Solve LP Relaxation

Add Cuts
Run Heuristics
Branch

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

Repeat:

Prune?

1
2
3
4
5
6

LP-based Land & Doig, 1960

Branch & Bound for Integer Optimization

2

Select Node
Solve LP Relaxation

Add Cuts
Run Heuristics
Branch

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

!"
Repeat:

Prune?

1
2
3
4
5
6

1

LP-based Land & Doig, 1960

Branch & Bound for Integer Optimization

2

Select Node
Solve LP Relaxation

Add Cuts
Run Heuristics
Branch

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

!" Solve LP Relaxation
→ Lower Bound on OPT

Repeat:

Prune?

1
2
3
4
5
6

2

[0,1]n
LP-based Land & Doig, 1960

Branch & Bound for Integer Optimization

2

Select Node
Solve LP Relaxation

Add Cuts
Run Heuristics
Branch

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

!" Solve LP Relaxation
→ Lower Bound on OPT

Repeat:

Prune?

1
2
3
4
5
6

3

[0,1]n

worse than best solution?
Prune!

LP-based Land & Doig, 1960

Branch & Bound for Integer Optimization

2

Select Node
Solve LP Relaxation

Add Cuts
Run Heuristics
Branch

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

!" Add Cuts:
Tightening Constraints

Repeat:

Prune?

1
2
3
4
5
6

4

LP-based Land & Doig, 1960

Branch & Bound for Integer Optimization

2

Select Node
Solve LP Relaxation

Add Cuts
Run Heuristics
Branch

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

!" Heuristic A
Heuristic B
Heuristic C

Feasible solution?

Repeat:

Prune?

1
2
3
4
5
6
5

LP-based

Update Best Solution

Land & Doig, 1960

Branch & Bound for Integer Optimization

2

Select Node
Solve LP Relaxation

Add Cuts
Run Heuristics
Branch

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

Repeat:
!" #$?

#&?
…
#'?

#(= 0 #(= 1
Prune?

1
2
3
4
5
66

LP-based Land & Doig, 1960

Branch & Bound for Integer Optimization

2

Select Node
Solve LP Relaxation

Add Cuts
Run Heuristics
Branch

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

Repeat:
!"

#$

!% !$

#$ = 0 #$ = 1

Prune?

1
2
3
4
5
66

LP-based Land & Doig, 1960

Branch & Bound for Integer Optimization

2

Select Node
Solve LP Relaxation

Add Cuts
Run Heuristics
Branch

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

Repeat:

!" !#

$# = 0 $# = 1

Prune?

1
2
3
4
5
6

1

LP-based Land & Doig, 1960

Branch & Bound for Integer Optimization

2

Select Node
Solve LP Relaxation

Add Cuts
Run Heuristics
Branch

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

Repeat:

!" = 0 !" = 1

!& = 0!' = 0

!& = 0 !& = 1

!& = 1Prune?

1
2
3
4
5
6

LP-based Land & Doig, 1960

!

! !

!

7.4 LP-Based Branch and Bound 121

Initialization
Initial problem S with

reformulation P on list
Z = −∞

Incumbent x∗ void

Call primal heuristic
If solution xH of value ZH ,

Z = ZH , x∗ = xH

Return two subproblems Si
1 and Si

2
with formulations P i

1 and P i
2

and upper bounds Z
i

Y

If xi(LP) integer, update primal bound
Z = Z

i and incumbent x∗ = xi(LP)
Prune by optimality

Y

Y

Y

Y

N

N

N

N

N

If Z
i ≤ Z, prune by bound

If P i is empty, prune by infeasibility

Solve LP relaxation over P i

Dual bound Z
i = LP value

xi(LP) = LP solution

Remove problem from listSi

with formulation P i

and dual bound Z
i

If Z
i ≤ Z, prune by bound

Y

List
Empty? STOP

Incumbent optimal

Figure 7.10 Branch-and-bound flow chart.

Pruning rule

Pruning rule

Pruning rule

Primal heuristic

Node selection

Solving LP Relaxation

Pruning rule

Branching variable selection

Termination criterion

From Integer Programming by Wolsey

0-1 Knapsack Problem

4

!

! !

!

6 1 Formulations

The 0–1 Knapsack Problem

There is a budget b available for investment in projects during the coming year
and n projects are under consideration, where aj is the outlay for project j and cj is
its expected return. The goal is to choose a set of projects so that the budget is not
exceeded and the expected return is maximized.

De!nition of the variables.
xj = 1 if project j is selected, and xj = 0 otherwise.

De!nition of the constraints.
The budget cannot be exceeded:

n∑
j=1

ajxj ≤ b.

The variables are 0–1:

xj ∈ {0, 1} for j = 1,… ,n.

De!nition of the objective function.
The expected return is maximized:

max
n∑

j=1
cjxj.

The Set Covering Problem

Given a certain number of regions, the problem is to decide where to install a set of
emergency service centers. For each possible center, the cost of installing a service
center and which regions it can service are known. For instance, if the centers are
!re stations, a station can service those regions for which a !re engine is guaran-
teed to arrive on the scene of a !re within eight minutes. The goal is to choose a
minimum cost set of service centers so that each region is covered.

First, we can formulate it as a more abstract COP. Let M = {1,… ,m} be the set
of regions, and N = {1,… ,n} the set of potential centers. Let Sj ⊆ M be the regions
that can be serviced by a center at j ∈ N and cj its installation cost. We obtain the
problem:

min
T⊆N

{∑
j∈T

cj ∶ ∪j∈TSj = M
}

.

Now, we formulate it as a 0–1 IP. To facilitate the description, we !rst construct
a 0–1 incidence matrix A such that aij = 1 if i ∈ Sj and aij = 0, otherwise. Note that
this is nothing but processing of the data.

!

! !

!

6 1 Formulations

The 0–1 Knapsack Problem

There is a budget b available for investment in projects during the coming year
and n projects are under consideration, where aj is the outlay for project j and cj is
its expected return. The goal is to choose a set of projects so that the budget is not
exceeded and the expected return is maximized.

De!nition of the variables.
xj = 1 if project j is selected, and xj = 0 otherwise.

De!nition of the constraints.
The budget cannot be exceeded:

n∑
j=1

ajxj ≤ b.

The variables are 0–1:

xj ∈ {0, 1} for j = 1,… ,n.

De!nition of the objective function.
The expected return is maximized:

max
n∑

j=1
cjxj.

The Set Covering Problem

Given a certain number of regions, the problem is to decide where to install a set of
emergency service centers. For each possible center, the cost of installing a service
center and which regions it can service are known. For instance, if the centers are
!re stations, a station can service those regions for which a !re engine is guaran-
teed to arrive on the scene of a !re within eight minutes. The goal is to choose a
minimum cost set of service centers so that each region is covered.

First, we can formulate it as a more abstract COP. Let M = {1,… ,m} be the set
of regions, and N = {1,… ,n} the set of potential centers. Let Sj ⊆ M be the regions
that can be serviced by a center at j ∈ N and cj its installation cost. We obtain the
problem:

min
T⊆N

{∑
j∈T

cj ∶ ∪j∈TSj = M
}

.

Now, we formulate it as a 0–1 IP. To facilitate the description, we !rst construct
a 0–1 incidence matrix A such that aij = 1 if i ∈ Sj and aij = 0, otherwise. Note that
this is nothing but processing of the data.

!

! !

!

6 1 Formulations

The 0–1 Knapsack Problem

There is a budget b available for investment in projects during the coming year
and n projects are under consideration, where aj is the outlay for project j and cj is
its expected return. The goal is to choose a set of projects so that the budget is not
exceeded and the expected return is maximized.

De!nition of the variables.
xj = 1 if project j is selected, and xj = 0 otherwise.

De!nition of the constraints.
The budget cannot be exceeded:

n∑
j=1

ajxj ≤ b.

The variables are 0–1:

xj ∈ {0, 1} for j = 1,… ,n.

De!nition of the objective function.
The expected return is maximized:

max
n∑

j=1
cjxj.

The Set Covering Problem

Given a certain number of regions, the problem is to decide where to install a set of
emergency service centers. For each possible center, the cost of installing a service
center and which regions it can service are known. For instance, if the centers are
!re stations, a station can service those regions for which a !re engine is guaran-
teed to arrive on the scene of a !re within eight minutes. The goal is to choose a
minimum cost set of service centers so that each region is covered.

First, we can formulate it as a more abstract COP. Let M = {1,… ,m} be the set
of regions, and N = {1,… ,n} the set of potential centers. Let Sj ⊆ M be the regions
that can be serviced by a center at j ∈ N and cj its installation cost. We obtain the
problem:

min
T⊆N

{∑
j∈T

cj ∶ ∪j∈TSj = M
}

.

Now, we formulate it as a 0–1 IP. To facilitate the description, we !rst construct
a 0–1 incidence matrix A such that aij = 1 if i ∈ Sj and aij = 0, otherwise. Note that
this is nothing but processing of the data.

Can you find a
feasible solution

greedily?

• an algorithm with parameters that affect its behaviour,

• a space of parameter settings (configurations), where specifies
values for ,

• a set of problem instances ,

• a performance metric that measures the performance of on instance
set for a given configuration ,

A p1, …, pk

C c ∈ C
p1, …, pk

I

m A
I c

5

Hoos, Holger H. "Automated algorithm configuration and parameter
tuning." Autonomous search. Springer, Berlin, Heidelberg, 2011. 37-71.

find a configuration such that running
algorithm on instance set maximizes metric

c* ∈ C
A I m

Exponent such that items are sorted w.r.t. p1 cj/a
p1
jGreedy 0-1 knapsack

p1 ∈ (0,1]

∑
i∈I

n

∑
j=1

cjxj

Why tune an EXACT solver?
• Given sufficient time, solver is guaranteed to return global optimum (or

declare instance infeasible).

6

A. Small changes to exact algorithm can dramatically influence its running
time.

B. In practice, we have a limited time budget!

C. There is no universally superior (data-independent) “parameter setting”.

A. Small changes to exact algorithm can
dramatically influence its running time.

7

!

! !

!

114 7 Branch and Bound

S000 S001 S010 S011 S100 S101 S110 S111

S00 S01 S10 S11

S0 S1

S
x1 = 0 x1 = 1

x2 = 0 x2 = 1

x3 = 0 x3 = 1

Figure 7.1 Binary enumeration tree.

(1, 3)

(2, 3)(2, 4)(2, 4)

1234 1243 1342 1324 1432 1423

(1, 2)

(2, 3) (2, 1) (2, 1)

(1, 4)

Figure 7.2 TSP enumeration tree.

that the cities are visited in the order i1, i2, i3, i4, i1 respectively. Note that this is an
example of multiway as opposed to binary branching, in which a set can be divided
into more than two parts.

7.2 Implicit Enumeration

We saw in Chapter 1 that complete enumeration is totally impossible for most
problems as soon as the number of variables in an integer program, or nodes in a
graph exceeds 20 or 30. So we need to do more than just divide inde!nitely. How
can we use some bounds on the values of {Zk} intelligently? First, how can we put
together bound information? Note that as we are maximizing, we take Zk

= −∞
when Sk = ∅ and Zk = −∞ when no feasible solution in Sk has been found.

Proposition 7.2 Let S = S1 ∪ · · · ∪ SK be a decomposition of S into smaller sets,
and let Zk = max{cx ∶ x ∈ Sk} for k = 1,… ,K, Zk be an upper bound on Zk and Zk

be a lower bound on Zk. Then Z = maxk Zk is an upper bound on Z and Z = maxk Zk

is a lower bound on Z.

From Integer Programming by Wolsey

B. In practice, we have a limited time budget!

8

Qualified RTDs for various solution qualities:

relative solution quality [%]

0
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.5 1 1.5 2 2.5

10s
3.2s
 1s
0.3s
0.1s

P(
so

lv
e)

run-time [CPU sec]

0.01
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.1 1 10 100 1 000

0.8%
0.6%
0.4%
0.2%

opt

P(
so

lv
e)

Stochastic Local Search: Foundations and Applications 23

Adapted from Holger Hoos, CPSC536H at UBC: http://
www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/

m5-all.pdf

Each curve
is for a

different
version of

an algorithm

http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf
http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf
http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf

C. There is no universally superior (data-
independent) “parameter setting”.

9
From Tobias Achterberg, doctoral dissertation (2007)

70 Branching

counted as a search node in the statistics. Nevertheless, the results show that the
“local greedy” procedure of full strong branching is a good strategy to produce a
small search tree.

Unfortunately, the node reductions achieved by the extensive use of strong branch-
ing do not justify the runtime costs: on the diverse test sets miplib, coral, and
milp, full strong branching is around 100 % slower while strong branching is still 50 %
slower than hybrid reliability/inference branching . Although not that prominent, the
effect is clearly visible on the other test sets as well, which consist of instances of a
single problem class each.

Out of the strategies that combine pseudocosts and strong branching, namely
hybrid strong/pseudocost branching (“hybr strong”), pseudocost branching with strong
branching initialization (“psc strinit”), and reliability branching , the latter is the
most successful on our test sets. Hybrid strong/pseudocost branching usually needs
fewer nodes, but this cannot compensate the higher computational costs of strong
branching applied up to depth d = 10 of the search tree. In contrast, in reliability
branching the node reduction due to the more extensive use of strong branching
pays off: compared to pseudocost branching with strong branching initialization, it
also leads to a reduction in the runtime for most of the test sets.

The inference branching rule is usually inferior to reliability branching . However,
it is the winner on the enlight, alu, and acc instances. The enlight test set
consists of instances of a combinatorial game, in which the objective function does
not play a significant role. The chip verification instances of the alu test set only
contain a completely artificial objective function. The instances of the acc test
set model a basketball scheduling problem (see Nemhauser and Trick [173]) which
basically is a pure feasibility problem without objective function. In all cases, it
is not surprising that pseudocosts do not yield a good evaluation of the branching
candidates and that the number of inferences is a better choice. At least for the
alu and acc instances, the incorporation of the inference history into the reliability
branching rule is able to transfer some of the benefits of inference branching to the
default hybrid reliability/inference branching rule. On the other test sets, reliability
branching performs equally well.

Branching Score Function

Table 5.2 summarizes the benchmarks to compare various branching score functions
of type (5.1) against the default SCIP product score function (5.2). Detailed results
can be found in Tables B.21 to B.30 in Appendix B.

Using the weighted sum score function

score(q−, q+) = (1− µ) · min{q−, q+} + µ · max{q−, q+},

with a weight of µ = 0 as suggested by Bénichou et al. [39] and Beale [37] means to
choose a branching variable for which the minimum of the two individual score values
q− and q+ is as large as possible. In the default hybrid reliability/inference branching
rule, the largest contribution to the total score comes from the pseudocost estimates
∆̃− = f−j Ψ−j and ∆̃+ = f+

j Ψ+
j . Thus, using the weight µ = 0 basically means

to select a branching variable for which the smaller estimated objective increase is
maximal. The idea behind this choice is to balance the search tree and to improve
the global dual bound as fast as possible.

The other extreme case is to use µ = 1. The rationale behind this setting is to
drive one of the two children to infeasibility as fast as possible in order to restrict

!" = 0 !" = 1

!& = 0 !& = 1!' = 0

!& = 0 !& = 1

!(?
!*?
…
!+?

!, = 0 !, = 1

Chapter 5

Branching

Most of this chapter is joint work with Thorsten Koch and Alexander Martin. Parts
of it were published in Achterberg, Koch, and Martin [5].

Since branching is in the core of any branch-and-bound algorithm, finding good
strategies was important to practical MIP solving right from the beginning, see Béni-
chou et al. [39] or Mitra [165]. We refrain from giving details of all existing strategies,
but concentrate on the most popular rules used in todays MIP solvers, in particular
the ones that are available in SCIP. For a comprehensive study of branch-and-bound
strategies we refer to Land and Powell [139], Linderoth and Savelsbergh [146], Fü-
genschuh and Martin [90], and the references therein.

The only way to split a problem Q within an LP based branch-and-bound al-
gorithm is to branch on linear inequalities in order to keep the property of having
an LP relaxation at hand. The easiest and most common inequalities are trivial
inequalities, i.e., inequalities that split the feasible interval of a singleton variable,
compare Figure 2.2 on page 17. To be more precise, if xj , j ∈ I, is some integer
variable with a fractional value x̌j in the current optimal LP solution, we obtain
two subproblems: one by adding the trivial inequality xj ≤ #x̌j$ (called the left
subproblem or left child, denoted by Q−j) and one by adding the trivial inequality

xj ≥ &x̌j' (called the right subproblem or right child, denoted by Q+
j). This proce-

dure of branching on trivial inequalities is also called branching on variables, because
it only requires to change the bounds of variable xj . Branching on more compli-
cated inequalities or even splitting the problem into more than two subproblems
are rarely incorporated into general MIP solvers, even though it can be effective
in special cases, see, for instance, Borndörfer, Ferreira, and Martin [51], Clochard
and Naddef [62], or Naddef [169]. SCIP supports general branching on constraints
with an arbitrary number of children, but all of the branching rules included in the
distribution branch on variables and create a binary search tree.

The basic algorithm for variable selection may be stated as follows:

Algorithm 5.1 Generic variable selection

Input : Current subproblem Q with an optimal LP solution x̌ /∈ XMIP.

Output : An index j ∈ I of an integer variable xj with fractional LP value x̌j /∈ Z.

1. Let F = {j ∈ I | x̌j /∈ Z} be the set of branching candidates.

2. For all candidates j ∈ F , calculate a score value sj ∈ R.

3. Return an index j ∈ F with sj = maxk∈F{sk}.

In the following we focus on the most common variable selection rules, which are
all variants of Algorithm 5.1. The difference is how the score in Step 2 is computed.

The ultimate goal is to find a computationally inexpensive branching strategy
that minimizes the number of branch-and-bound nodes that need to be evaluated.

61

C. There is no universally superior (data-
independent) “parameter setting”.

10
From Tobias Achterberg, doctoral dissertation (2007)

5.11. Computational Results 71

test set min (µ = 0) weighted (µ = 1
6

) weighted (µ = 1
3

) avg (µ = 1
2

) max (µ = 1)

ti
m

e

miplib +26 +12 +28 +30 +53
coral +25 +20 +27 +49 +113
milp +18 +10 +36 +35 +58
enlight +34 −19 −1 −9 +115
alu +88 +66 +85 +101 +187
fctp +72 −2 +6 +26 +56
acc +43 +70 +29 +41 +50
fc +58 −7 −6 −4 −2
arcset +35 +11 +22 +32 +62
mik +134 +13 +31 +52 +169

total +29 +14 +29 +37 +75

n
o

d
es

miplib +24 +21 +46 +73 +92
coral +25 +48 +53 +102 +199
milp +19 +26 +69 +68 +97
enlight +12 −13 +15 +2 +116
alu +85 +104 +96 +165 +357
fctp +71 +8 +12 +34 +68
acc +100 +390 +222 +235 +391
fc +147 −12 −6 −35 −10
arcset +57 +20 +37 +60 +109
mik +131 +16 +34 +63 +193

total +31 +34 +54 +76 +130

Table 5.2. Performance effect of different branching score functions for solving MIP instances.
The values denote the percental changes in the shifted geometric mean of the runtime (top) and
number of branching nodes (bottom) compared to the default product score function (5.2). Positive
values represent a deterioration, negative values an improvement.

the growth of the search tree. In the best case, one child turns out to be infeasible
which means that we have avoided the node duplication for this branching step.

The results for the two settings (columns “min” and “max”) show that improving
the global dual bound and balancing the tree with µ = 0 is much more successful
than the infeasibility idea of µ = 1. The “min” approach is also superior to using
the average value as shown in column “avg”, which was proposed by Gauthier and
Ribière [93]. However, the best setting for the weight µ is located between 0 and 1

2 ,
which was also reported in earlier computational studies, see Linderoth and Savels-
bergh [146]. They found the value of µ = 1

3 to be the most successful. In contrast,
the value µ = 1

6 that Martin [159] used in SIP seems to be the best choice for SCIP
on the considered test sets.

Although we tried several values for the weight µ, none of them can compete
against the product score function (5.2), which is the default strategy in SCIP. The
product is clearly superior to all variants of the weighted sum score function. Even
the best of them is outperformed by more than 10 %. As to the author’s knowledge,
using a product based score function is a new idea that has not been proposed
previously in the literature.

5.11. Computational Results 71

test set min (µ = 0) weighted (µ = 1
6

) weighted (µ = 1
3

) avg (µ = 1
2

) max (µ = 1)

ti
m

e

miplib +26 +12 +28 +30 +53
coral +25 +20 +27 +49 +113
milp +18 +10 +36 +35 +58
enlight +34 −19 −1 −9 +115
alu +88 +66 +85 +101 +187
fctp +72 −2 +6 +26 +56
acc +43 +70 +29 +41 +50
fc +58 −7 −6 −4 −2
arcset +35 +11 +22 +32 +62
mik +134 +13 +31 +52 +169

total +29 +14 +29 +37 +75

n
o

d
es

miplib +24 +21 +46 +73 +92
coral +25 +48 +53 +102 +199
milp +19 +26 +69 +68 +97
enlight +12 −13 +15 +2 +116
alu +85 +104 +96 +165 +357
fctp +71 +8 +12 +34 +68
acc +100 +390 +222 +235 +391
fc +147 −12 −6 −35 −10
arcset +57 +20 +37 +60 +109
mik +131 +16 +34 +63 +193

total +31 +34 +54 +76 +130

Table 5.2. Performance effect of different branching score functions for solving MIP instances.
The values denote the percental changes in the shifted geometric mean of the runtime (top) and
number of branching nodes (bottom) compared to the default product score function (5.2). Positive
values represent a deterioration, negative values an improvement.

the growth of the search tree. In the best case, one child turns out to be infeasible
which means that we have avoided the node duplication for this branching step.

The results for the two settings (columns “min” and “max”) show that improving
the global dual bound and balancing the tree with µ = 0 is much more successful
than the infeasibility idea of µ = 1. The “min” approach is also superior to using
the average value as shown in column “avg”, which was proposed by Gauthier and
Ribière [93]. However, the best setting for the weight µ is located between 0 and 1

2 ,
which was also reported in earlier computational studies, see Linderoth and Savels-
bergh [146]. They found the value of µ = 1

3 to be the most successful. In contrast,
the value µ = 1

6 that Martin [159] used in SIP seems to be the best choice for SCIP
on the considered test sets.

Although we tried several values for the weight µ, none of them can compete
against the product score function (5.2), which is the default strategy in SCIP. The
product is clearly superior to all variants of the weighted sum score function. Even
the best of them is outperformed by more than 10 %. As to the author’s knowledge,
using a product based score function is a new idea that has not been proposed
previously in the literature.

<
<
<
>>
>
>
>
>
>
=

Performance effect of
different branching score
functions for solving MIP
instances. The values
denote the percental
changes in the shifted
geometric mean of the
runtime compared to the
default score function.
Positive values represent a
deterioration, negative
values an improvement.

70 Branching

counted as a search node in the statistics. Nevertheless, the results show that the
“local greedy” procedure of full strong branching is a good strategy to produce a
small search tree.

Unfortunately, the node reductions achieved by the extensive use of strong branch-
ing do not justify the runtime costs: on the diverse test sets miplib, coral, and
milp, full strong branching is around 100 % slower while strong branching is still 50 %
slower than hybrid reliability/inference branching . Although not that prominent, the
effect is clearly visible on the other test sets as well, which consist of instances of a
single problem class each.

Out of the strategies that combine pseudocosts and strong branching, namely
hybrid strong/pseudocost branching (“hybr strong”), pseudocost branching with strong
branching initialization (“psc strinit”), and reliability branching , the latter is the
most successful on our test sets. Hybrid strong/pseudocost branching usually needs
fewer nodes, but this cannot compensate the higher computational costs of strong
branching applied up to depth d = 10 of the search tree. In contrast, in reliability
branching the node reduction due to the more extensive use of strong branching
pays off: compared to pseudocost branching with strong branching initialization, it
also leads to a reduction in the runtime for most of the test sets.

The inference branching rule is usually inferior to reliability branching . However,
it is the winner on the enlight, alu, and acc instances. The enlight test set
consists of instances of a combinatorial game, in which the objective function does
not play a significant role. The chip verification instances of the alu test set only
contain a completely artificial objective function. The instances of the acc test
set model a basketball scheduling problem (see Nemhauser and Trick [173]) which
basically is a pure feasibility problem without objective function. In all cases, it
is not surprising that pseudocosts do not yield a good evaluation of the branching
candidates and that the number of inferences is a better choice. At least for the
alu and acc instances, the incorporation of the inference history into the reliability
branching rule is able to transfer some of the benefits of inference branching to the
default hybrid reliability/inference branching rule. On the other test sets, reliability
branching performs equally well.

Branching Score Function

Table 5.2 summarizes the benchmarks to compare various branching score functions
of type (5.1) against the default SCIP product score function (5.2). Detailed results
can be found in Tables B.21 to B.30 in Appendix B.

Using the weighted sum score function

score(q−, q+) = (1− µ) · min{q−, q+} + µ · max{q−, q+},

with a weight of µ = 0 as suggested by Bénichou et al. [39] and Beale [37] means to
choose a branching variable for which the minimum of the two individual score values
q− and q+ is as large as possible. In the default hybrid reliability/inference branching
rule, the largest contribution to the total score comes from the pseudocost estimates
∆̃− = f−j Ψ−j and ∆̃+ = f+

j Ψ+
j . Thus, using the weight µ = 0 basically means

to select a branching variable for which the smaller estimated objective increase is
maximal. The idea behind this choice is to balance the search tree and to improve
the global dual bound as fast as possible.

The other extreme case is to use µ = 1. The rationale behind this setting is to
drive one of the two children to infeasibility as fast as possible in order to restrict

C. There is no universally superior (data-
independent) “parameter setting”.

11
Balcan, Maria-Florina, et al. "Learning to branch." International

conference on machine learning. PMLR, 2018.

Theorem (informal): There exist
distributions over MIP instances
such that setting between a and
b gives small branch-and-bound
trees, but other values give
exponentially large trees

μ

70 Branching

counted as a search node in the statistics. Nevertheless, the results show that the
“local greedy” procedure of full strong branching is a good strategy to produce a
small search tree.

Unfortunately, the node reductions achieved by the extensive use of strong branch-
ing do not justify the runtime costs: on the diverse test sets miplib, coral, and
milp, full strong branching is around 100 % slower while strong branching is still 50 %
slower than hybrid reliability/inference branching . Although not that prominent, the
effect is clearly visible on the other test sets as well, which consist of instances of a
single problem class each.

Out of the strategies that combine pseudocosts and strong branching, namely
hybrid strong/pseudocost branching (“hybr strong”), pseudocost branching with strong
branching initialization (“psc strinit”), and reliability branching , the latter is the
most successful on our test sets. Hybrid strong/pseudocost branching usually needs
fewer nodes, but this cannot compensate the higher computational costs of strong
branching applied up to depth d = 10 of the search tree. In contrast, in reliability
branching the node reduction due to the more extensive use of strong branching
pays off: compared to pseudocost branching with strong branching initialization, it
also leads to a reduction in the runtime for most of the test sets.

The inference branching rule is usually inferior to reliability branching . However,
it is the winner on the enlight, alu, and acc instances. The enlight test set
consists of instances of a combinatorial game, in which the objective function does
not play a significant role. The chip verification instances of the alu test set only
contain a completely artificial objective function. The instances of the acc test
set model a basketball scheduling problem (see Nemhauser and Trick [173]) which
basically is a pure feasibility problem without objective function. In all cases, it
is not surprising that pseudocosts do not yield a good evaluation of the branching
candidates and that the number of inferences is a better choice. At least for the
alu and acc instances, the incorporation of the inference history into the reliability
branching rule is able to transfer some of the benefits of inference branching to the
default hybrid reliability/inference branching rule. On the other test sets, reliability
branching performs equally well.

Branching Score Function

Table 5.2 summarizes the benchmarks to compare various branching score functions
of type (5.1) against the default SCIP product score function (5.2). Detailed results
can be found in Tables B.21 to B.30 in Appendix B.

Using the weighted sum score function

score(q−, q+) = (1− µ) · min{q−, q+} + µ · max{q−, q+},

with a weight of µ = 0 as suggested by Bénichou et al. [39] and Beale [37] means to
choose a branching variable for which the minimum of the two individual score values
q− and q+ is as large as possible. In the default hybrid reliability/inference branching
rule, the largest contribution to the total score comes from the pseudocost estimates
∆̃− = f−j Ψ−j and ∆̃+ = f+

j Ψ+
j . Thus, using the weight µ = 0 basically means

to select a branching variable for which the smaller estimated objective increase is
maximal. The idea behind this choice is to balance the search tree and to improve
the global dual bound as fast as possible.

The other extreme case is to use µ = 1. The rationale behind this setting is to
drive one of the two children to infeasibility as fast as possible in order to restrict

Why tune an EXACT solver?
• Given sufficient time, solver is guaranteed to return global optimum (or

declare instance infeasible).

12

A. Small changes to exact algorithm can dramatically influence its running
time.

B. In practice, we have a limited time budget!

C. There is no universally superior (data-independent) “parameter setting”.

How do we evaluate solver performance?

Evaluating a MIP solver on a set of instances

• Total time

• Number of nodes in tree

• What if solver did not terminate within time limit?

• Other limitations of these metrics?

13

!" = 0 !" = 1

!& = 0!' = 0

!& = 0 !& = 1

!& = 1

Primal Integral
A more comprehensive metric?

14

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

Solǀing ƚhis node LP͙
Pr

im
al

 G
ap

 𝑝
(𝑡
ሻ

Time

No incumbent at first

… gives 1st

incumbent

RƵnning H aƚ ƚhis node͙

… gives Ϯnd

incumbent
OPT found

Primal
Integral
𝑷(𝒕𝒎𝒂𝒙ሻ

!" = 0 !" = 1

!& = 0!' = 0

!& = 0 !& = 1

!& = 1

Primal-Dual Integral

15

!" = 0 !" = 1

!& = 0!' = 0

!& = 0 !& = 1

!& = 1

Think of this metric as: the
average optimality gap over time

Illustration from https://www.ecole.ai/2021/ml4co-competition/

https://www.ecole.ai/2021/ml4co-competition/

Instance Datasets for Learning in MIP

• MIPLIB2017: http://miplib2017.zib.de/

• Community effort, 1000+ MILP instances

• Wide variety of:

• Applications

• Sizes (10s of vars/cons to millions)

• Mix of integer/binary/continuous vars.

• Difficulties

16 Image from http://miplib2017.zib.de/

http://miplib2017.zib.de/
http://miplib2017.zib.de/

Forest Harvesting

17

Forest Harvesting

17

Forest Harvesting

17

G(V, E)

Forest Harvesting

17

G(V, E)

Forest Harvesting

17

Goal: Harvest subset of parcels
to maximize revenue; pay cost
for harvesting adjacent parcels

G(V, E)

Forest Harvesting

17

Goal: Harvest subset of parcels
to maximize revenue; pay cost
for harvesting adjacent parcels

maximize∑
i∈V

rixi − ∑
(i,j)∈E

cijyij

subject to xi + xj − yij ≤ 1

x ∈ {0,1}n, y ∈ {0,1}m G(V, E)

i
j

Forest Harvesting over Time/Space

18

Commonly used Problems
• Maximum Independent Set

• Generalized Independent Set

• Combinatorial Auctions

• Set Covering Problem

• Scheduling problems

• ….

19

ML4CO Competition

20
From https://www.ecole.ai/2021/ml4co-competition/

https://www.ecole.ai/2021/ml4co-competition/

https://www.ecole.ai/2021/ml4co-competition/
https://www.ecole.ai/2021/ml4co-competition/

First Stop: Back to Configuration

21

CPLEX Documentation

First Stop: Back to Configuration

22

CPLEX Documentation

ParamILS ILS: Iterated Local Search

23

solution space

ob
je
ct
iv
e
fu
nc
ti
on
 v
al
ue

global optimum

local optima

Hoos / Stützle Stochastic Search Algorithms 46

Hutter, Frank, et al. "ParamILS: an automatic
algorithm configuration framework." Journal of

Artificial Intelligence Research 36 (2009): 267-306.

48 Holger H. Hoos

procedure ParamILS
input target algorithm A, set of configurations C, set of problem instances I,

performance metric m;
parameters configuration c0 ∈C, integer r, integer s, probability pr;
output configuration c∗;

c∗ := c0;
for i := 1 to r do

draw c from C uniformly at random;
assess c against c∗ based on performance of A on instances from I according to metric m;
if c found to perform better than c∗ then

c∗ := c;
end if;

end for;

c := c∗ ;
perform subsidiary local search on c;
while termination condition not met do

c′ := c;
perform s random perturbation steps on c′

perform subsidiary local search on c′;
assess c′ against c based on performance of A on instances from I according to metric m;
if c′ found to perform better than c then // acceptance criterion

update overall incumbent c∗;
c := c′;

end if;
with probability pr do

draw c from C uniformly at random;
end with probability;

end while;
return c∗;

end ParamILS

Fig. 3.3: High-level outline of ParamILS, as introduced by [36]; details are explained
in the text

ter effects are correlated, as well as in conjunction with mechanisms that recog-
nise and exploit such dependencies in parameter response. Furthermore, search
strategies other than iterative first-improvement could be considered in variants of
ParamILS that build and maintain reasonably accurate models of local parameter
responses.

The perturbation procedure used in the ParamILS framework performs a fixed
number, s, of steps chosen uniformly at random in the same one-exchange neigh-
bourhood used during the local search phases. Computational experiments in which
various fixed values of s as well as several multiples of the number of target algo-
rithm parameters were considered suggest that relatively small perturbations (i.e.,
s = 2) are sufficient for obtaining good performance of the overall configuration
procedure [39]. Considering the use of iterative first-improvement during the local
search phases, this is not overly surprising; still, larger perturbations might be effec-

Initial sampling phase

Random perturbation + local search

Update incumbent config.

Random restart!

Evaluation

The first major configuration result for MIP

24

Hutter, Frank, et al. "ParamILS: an automatic
algorithm configuration framework." Journal of

Artificial Intelligence Research 36 (2009): 267-306.

The first major configuration result for MIP

25

Hutter, Frank, et al. "ParamILS: an automatic
algorithm configuration framework." Journal of

Artificial Intelligence Research 36 (2009): 267-306.

26

Hutter, Frank, et al. "ParamILS: an automatic
algorithm configuration framework." Journal of

Artificial Intelligence Research 36 (2009): 267-306.

Algorithm Configuration: Pros and Cons

Automated Algorithm Configuration
• ParamILS [Hutter et al., JAIR 2009], SMAC [Hutter et

al., LION 2011]

• Key Idea: search over parameter configurations
• Stochastic Local Search or Bayesian Optimization

• Great for algorithms with many parameters

• 2-52x speedups for CPLEX on some problem

distributions [Hutter et al., CPAIOR 2010]

27

Limitations
• Operates at the instance-level, not the algorithm iteration-level
• Assumes human-designed parameter space is rich enough

See IJCAI-20 Tutorial: https://www.automl.org/tutorial_ac_ijcai20/

28

Branch-and-Bound in a Nutshell

Algorithm: LP-based Branch-and-Bound
Input: a MIP min{cT x | Ax  b, x 2 Rn, xj 2 Z 8j 2 I}
Output: an optimal solution x⇤, z⇤ := cT x⇤

1 Initialize: Queue of sub-problems (nodes) L := {N0}, Best value z⇤ := 1, Best
solution x⇤ := ;

2 Terminate? If L = ;, return x⇤

3 Select Node [what selection rule?]: Choose a node Ni to process from L
4 Evaluate & Prune: Solve the LP relaxation of Ni and prune node if applicable.
5 Add Cuts [which cuts to add?]: new constraints that tighten the formulation.
6 Run Heuristics [which heuristics to run?]: try to find a better solution.
7 Select Branching Variable [what selection rule?]: Choose a variable that has fractional

value in the LP solution of Ni . Create two new subproblems Ni1 and Ni2. Go to line 2.

!"

Elias B. Khalil Discrete Optimization Meets ML January 29, 2019 5 / 53

29

Branch-and-Bound in a Nutshell

Algorithm: LP-based Branch-and-Bound
Input: a MIP min{cT x | Ax  b, x 2 Rn, xj 2 Z 8j 2 I}
Output: an optimal solution x⇤, z⇤ := cT x⇤

1 Initialize: Queue of sub-problems (nodes) L := {N0}, Best value z⇤ := 1, Best
solution x⇤ := ;

2 Terminate? If L = ;, return x⇤

3 Select Node [what selection rule?]: Choose a node Ni to process from L
4 Evaluate & Prune: Solve the LP relaxation of Ni and prune node if applicable.
5 Add Cuts [which cuts to add?]: new constraints that tighten the formulation.
6 Run Heuristics [which heuristics to run?]: try to find a better solution.
7 Select Branching Variable [what selection rule?]: Choose a variable that has fractional

value in the LP solution of Ni . Create two new subproblems Ni1 and Ni2. Go to line 2.

!"

Elias B. Khalil Discrete Optimization Meets ML January 29, 2019 5 / 53

Branch-and-Bound in a Nutshell

Algorithm: LP-based Branch-and-Bound
Input: a MIP min{cT x | Ax  b, x 2 Rn, xj 2 Z 8j 2 I}
Output: an optimal solution x⇤, z⇤ := cT x⇤

1 Initialize: Queue of sub-problems (nodes) L := {N0}, Best value z⇤ := 1, Best
solution x⇤ := ;

2 Terminate? If L = ;, return x⇤

3 Select Node [what selection rule?]: Choose a node Ni to process from L
4 Evaluate & Prune: Solve the LP relaxation of Ni and prune node if applicable.
5 Add Cuts [which cuts to add?]: new constraints that tighten the formulation.
6 Run Heuristics [which heuristics to run?]: try to find a better solution.
7 Select Branching Variable [what selection rule?]: Choose a variable that has fractional

value in the LP solution of Ni . Create two new subproblems Ni1 and Ni2. Go to line 2.

!"

Elias B. Khalil Discrete Optimization Meets ML January 29, 2019 5 / 53

Branch-and-Bound in a Nutshell

Algorithm: LP-based Branch-and-Bound
Input: a MIP min{cT x | Ax  b, x 2 Rn, xj 2 Z 8j 2 I}
Output: an optimal solution x⇤, z⇤ := cT x⇤

1 Initialize: Queue of sub-problems (nodes) L := {N0}, Best value z⇤ := 1, Best
solution x⇤ := ;

2 Terminate? If L = ;, return x⇤

3 Select Node [what selection rule?]: Choose a node Ni to process from L
4 Evaluate & Prune: Solve the LP relaxation of Ni and prune node if applicable.
5 Add Cuts [which cuts to add?]: new constraints that tighten the formulation.
6 Run Heuristics [which heuristics to run?]: try to find a better solution.
7 Select Branching Variable [what selection rule?]: Choose a variable that has fractional

value in the LP solution of Ni . Create two new subproblems Ni1 and Ni2. Go to line 2.

!"Add Cuts: constraints
that tighten LP

Elias B. Khalil Discrete Optimization Meets ML January 29, 2019 5 / 53

Branch-and-Bound in a Nutshell

Algorithm: LP-based Branch-and-Bound
Input: a MIP min{cT x | Ax  b, x 2 Rn, xj 2 Z 8j 2 I}
Output: an optimal solution x⇤, z⇤ := cT x⇤

1 Initialize: Queue of sub-problems (nodes) L := {N0}, Best value z⇤ := 1, Best
solution x⇤ := ;

2 Terminate? If L = ;, return x⇤

3 Select Node [what selection rule?]: Choose a node Ni to process from L
4 Evaluate & Prune: Solve the LP relaxation of Ni and prune node if applicable.
5 Add Cuts [which cuts to add?]: new constraints that tighten the formulation.
6 Run Heuristics [which heuristics to run?]: try to find a better solution.
7 Select Branching Variable [what selection rule?]: Choose a variable that has fractional

value in the LP solution of Ni . Create two new subproblems Ni1 and Ni2. Go to line 2.

!"
Heuristic A
Heuristic B
Heuristic C

Feasible solution?

Elias B. Khalil Discrete Optimization Meets ML January 29, 2019 5 / 53

30

Branch-and-Bound in a Nutshell

Algorithm: LP-based Branch-and-Bound
Input: a MIP min{cT x | Ax  b, x 2 Rn, xj 2 Z 8j 2 I}
Output: an optimal solution x⇤, z⇤ := cT x⇤

1 Initialize: Queue of sub-problems (nodes) L := {N0}, Best value z⇤ := 1, Best
solution x⇤ := ;

2 Terminate? If L = ;, return x⇤

3 Select Node [what selection rule?]: Choose a node Ni to process from L
4 Evaluate & Prune: Solve the LP relaxation of Ni and prune node if applicable.
5 Add Cuts [which cuts to add?]: new constraints that tighten the formulation.
6 Run Heuristics [which heuristics to run?]: try to find a better solution.
7 Select Branching Variable [what selection rule?]: Choose a variable that has fractional

value in the LP solution of Ni . Create two new subproblems Ni1 and Ni2. Go to line 2.

!"

Elias B. Khalil Discrete Optimization Meets ML January 29, 2019 5 / 53

Branch-and-Bound in a Nutshell

Algorithm: LP-based Branch-and-Bound
Input: a MIP min{cT x | Ax  b, x 2 Rn, xj 2 Z 8j 2 I}
Output: an optimal solution x⇤, z⇤ := cT x⇤

1 Initialize: Queue of sub-problems (nodes) L := {N0}, Best value z⇤ := 1, Best
solution x⇤ := ;

2 Terminate? If L = ;, return x⇤

3 Select Node [what selection rule?]: Choose a node Ni to process from L
4 Evaluate & Prune: Solve the LP relaxation of Ni and prune node if applicable.
5 Add Cuts [which cuts to add?]: new constraints that tighten the formulation.
6 Run Heuristics [which heuristics to run?]: try to find a better solution.
7 Select Branching Variable [what selection rule?]: Choose a variable that has fractional

value in the LP solution of Ni . Create two new subproblems Ni1 and Ni2. Go to line 2.

!"

Elias B. Khalil Discrete Optimization Meets ML January 29, 2019 5 / 53

Branch-and-Bound in a Nutshell

Algorithm: LP-based Branch-and-Bound
Input: a MIP min{cT x | Ax  b, x 2 Rn, xj 2 Z 8j 2 I}
Output: an optimal solution x⇤, z⇤ := cT x⇤

1 Initialize: Queue of sub-problems (nodes) L := {N0}, Best value z⇤ := 1, Best
solution x⇤ := ;

2 Terminate? If L = ;, return x⇤

3 Select Node [what selection rule?]: Choose a node Ni to process from L
4 Evaluate & Prune: Solve the LP relaxation of Ni and prune node if applicable.
5 Add Cuts [which cuts to add?]: new constraints that tighten the formulation.
6 Run Heuristics [which heuristics to run?]: try to find a better solution.
7 Select Branching Variable [what selection rule?]: Choose a variable that has fractional

value in the LP solution of Ni . Create two new subproblems Ni1 and Ni2. Go to line 2.

!"Add Cuts: constraints
that tighten LP

Elias B. Khalil Discrete Optimization Meets ML January 29, 2019 5 / 53

Branch-and-Bound in a Nutshell

Algorithm: LP-based Branch-and-Bound
Input: a MIP min{cT x | Ax  b, x 2 Rn, xj 2 Z 8j 2 I}
Output: an optimal solution x⇤, z⇤ := cT x⇤

1 Initialize: Queue of sub-problems (nodes) L := {N0}, Best value z⇤ := 1, Best
solution x⇤ := ;

2 Terminate? If L = ;, return x⇤

3 Select Node [what selection rule?]: Choose a node Ni to process from L
4 Evaluate & Prune: Solve the LP relaxation of Ni and prune node if applicable.
5 Add Cuts [which cuts to add?]: new constraints that tighten the formulation.
6 Run Heuristics [which heuristics to run?]: try to find a better solution.
7 Select Branching Variable [what selection rule?]: Choose a variable that has fractional

value in the LP solution of Ni . Create two new subproblems Ni1 and Ni2. Go to line 2.

!"
Heuristic A
Heuristic B
Heuristic C

Feasible solution?

Elias B. Khalil Discrete Optimization Meets ML January 29, 2019 5 / 53

Branch-and-Bound in a Nutshell

Algorithm: LP-based Branch-and-Bound
Input: a MIP min{cT x | Ax  b, x 2 Rn, xj 2 Z 8j 2 I}
Output: an optimal solution x⇤, z⇤ := cT x⇤

1 Initialize: Queue of sub-problems (nodes) L := {N0}, Best value z⇤ := 1, Best
solution x⇤ := ;

2 Terminate? If L = ;, return x⇤

3 Select Node [what selection rule?]: Choose a node Ni to process from L
4 Evaluate & Prune: Solve the LP relaxation of Ni and prune node if applicable.
5 Add Cuts [which cuts to add?]: new constraints that tighten the formulation.
6 Run Heuristics [which heuristics to run?]: try to find a better solution.
7 Select Branching Variable [what selection rule?]: Choose a variable that has fractional

value in the LP solution of Ni . Create two new subproblems Ni1 and Ni2. Go to line 2.

!"#$?
#&?
…
#'?

#(= 0 #(= 1

Elias B. Khalil Discrete Optimization Meets ML January 29, 2019 5 / 53

31

Branch-and-Bound in a Nutshell

Algorithm: LP-based Branch-and-Bound
Input: a MIP min{cT x | Ax  b, x 2 Rn, xj 2 Z 8j 2 I}
Output: an optimal solution x⇤, z⇤ := cT x⇤

1 Initialize: Queue of sub-problems (nodes) L := {N0}, Best value z⇤ := 1, Best
solution x⇤ := ;

2 Terminate? If L = ;, return x⇤

3 Select Node [what selection rule?]: Choose a node Ni to process from L
4 Evaluate & Prune: Solve the LP relaxation of Ni and prune node if applicable.
5 Add Cuts [which cuts to add?]: new constraints that tighten the formulation.
6 Run Heuristics [which heuristics to run?]: try to find a better solution.
7 Select Branching Variable [what selection rule?]: Choose a variable that has fractional

value in the LP solution of Ni . Create two new subproblems Ni1 and Ni2. Go to line 2.

!"

Elias B. Khalil Discrete Optimization Meets ML January 29, 2019 5 / 53

Branch-and-Bound in a Nutshell

Algorithm: LP-based Branch-and-Bound
Input: a MIP min{cT x | Ax  b, x 2 Rn, xj 2 Z 8j 2 I}
Output: an optimal solution x⇤, z⇤ := cT x⇤

1 Initialize: Queue of sub-problems (nodes) L := {N0}, Best value z⇤ := 1, Best
solution x⇤ := ;

2 Terminate? If L = ;, return x⇤

3 Select Node [what selection rule?]: Choose a node Ni to process from L
4 Evaluate & Prune: Solve the LP relaxation of Ni and prune node if applicable.
5 Add Cuts [which cuts to add?]: new constraints that tighten the formulation.
6 Run Heuristics [which heuristics to run?]: try to find a better solution.
7 Select Branching Variable [what selection rule?]: Choose a variable that has fractional

value in the LP solution of Ni . Create two new subproblems Ni1 and Ni2. Go to line 2.

!"

Elias B. Khalil Discrete Optimization Meets ML January 29, 2019 5 / 53

Branch-and-Bound in a Nutshell

Algorithm: LP-based Branch-and-Bound
Input: a MIP min{cT x | Ax  b, x 2 Rn, xj 2 Z 8j 2 I}
Output: an optimal solution x⇤, z⇤ := cT x⇤

1 Initialize: Queue of sub-problems (nodes) L := {N0}, Best value z⇤ := 1, Best
solution x⇤ := ;

2 Terminate? If L = ;, return x⇤

3 Select Node [what selection rule?]: Choose a node Ni to process from L
4 Evaluate & Prune: Solve the LP relaxation of Ni and prune node if applicable.
5 Add Cuts [which cuts to add?]: new constraints that tighten the formulation.
6 Run Heuristics [which heuristics to run?]: try to find a better solution.
7 Select Branching Variable [what selection rule?]: Choose a variable that has fractional

value in the LP solution of Ni . Create two new subproblems Ni1 and Ni2. Go to line 2.

!"Add Cuts: constraints
that tighten LP

Elias B. Khalil Discrete Optimization Meets ML January 29, 2019 5 / 53

Branch-and-Bound in a Nutshell

Algorithm: LP-based Branch-and-Bound
Input: a MIP min{cT x | Ax  b, x 2 Rn, xj 2 Z 8j 2 I}
Output: an optimal solution x⇤, z⇤ := cT x⇤

1 Initialize: Queue of sub-problems (nodes) L := {N0}, Best value z⇤ := 1, Best
solution x⇤ := ;

2 Terminate? If L = ;, return x⇤

3 Select Node [what selection rule?]: Choose a node Ni to process from L
4 Evaluate & Prune: Solve the LP relaxation of Ni and prune node if applicable.
5 Add Cuts [which cuts to add?]: new constraints that tighten the formulation.
6 Run Heuristics [which heuristics to run?]: try to find a better solution.
7 Select Branching Variable [what selection rule?]: Choose a variable that has fractional

value in the LP solution of Ni . Create two new subproblems Ni1 and Ni2. Go to line 2.

!"
Heuristic A
Heuristic B
Heuristic C

Feasible solution?

Elias B. Khalil Discrete Optimization Meets ML January 29, 2019 5 / 53

Branch-and-Bound in a Nutshell

Algorithm: LP-based Branch-and-Bound
Input: a MIP min{cT x | Ax  b, x 2 Rn, xj 2 Z 8j 2 I}
Output: an optimal solution x⇤, z⇤ := cT x⇤

1 Initialize: Queue of sub-problems (nodes) L := {N0}, Best value z⇤ := 1, Best
solution x⇤ := ;

2 Terminate? If L = ;, return x⇤

3 Select Node [what selection rule?]: Choose a node Ni to process from L
4 Evaluate & Prune: Solve the LP relaxation of Ni and prune node if applicable.
5 Add Cuts [which cuts to add?]: new constraints that tighten the formulation.
6 Run Heuristics [which heuristics to run?]: try to find a better solution.
7 Select Branching Variable [what selection rule?]: Choose a variable that has fractional

value in the LP solution of Ni . Create two new subproblems Ni1 and Ni2. Go to line 2.

!"#$?
#&?
…
#'?

#(= 0 #(= 1

Elias B. Khalil Discrete Optimization Meets ML January 29, 2019 5 / 53

Branch-and-Bound in a Nutshell

Algorithm: LP-based Branch-and-Bound
Input: a MIP min{cT x | Ax  b, x 2 Rn, xj 2 Z 8j 2 I}
Output: an optimal solution x⇤, z⇤ := cT x⇤

1 Initialize: Queue of sub-problems (nodes) L := {N0}, Best value z⇤ := 1, Best
solution x⇤ := ;

2 Terminate? If L = ;, return x⇤

3 Select Node [what selection rule?]: Choose a node Ni to process from L
4 Evaluate & Prune: Solve the LP relaxation of Ni and prune node if applicable.
5 Add Cuts [which cuts to add?]: new constraints that tighten the formulation.
6 Run Heuristics [which heuristics to run?]: try to find a better solution.
7 Select Branching Variable [what selection rule?]: Choose a variable that has fractional

value in the LP solution of Ni . Create two new subproblems Ni1 and Ni2. Go to line 2.

!" !#

$# = 0 $# = 1

Elias B. Khalil Discrete Optimization Meets ML January 29, 2019 5 / 53

ML Paradigms

32

Bengio, Yoshua, Andrea Lodi, and Antoine Prouvost.
“Machine learning for combinatorial optimization: a

methodological tour d’horizon.” European Journal of
Operational Research

This is only viable for heuristics

ML Paradigms

33

Bengio, Yoshua, Andrea Lodi, and Antoine Prouvost.
“Machine learning for combinatorial optimization: a

methodological tour d’horizon.” European Journal of
Operational Research

e.g., Algorithm Configuration

ML Paradigms

34

Bengio, Yoshua, Andrea Lodi, and Antoine Prouvost.
“Machine learning for combinatorial optimization: a

methodological tour d’horizon.” European Journal of
Operational Research

ML is infused
within a bigger
optimization
algorithm

