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Branch & Bound for Integer Optimization

Land & Doig, 1960

|
- P-based minclx st Ax < b,x € (p)"
Repeat: [0,1]
Solve LP Relaxation
Select Node — | ower Bound on OPT
Solve LP Relaxation /

worse than best solution?
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Branch & Bound for Integer Optimization
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From Integer Programming by Wolsey

Initialization
Initial problem S with
reformulation P on list
L =—00
Incumbent =™ void

l

Call primal heuristic

If solution =¥ of value Z% ,
Z — ZH, :E* — CUH

List
Empty?

Primal heuristic

IN

STOP

Incumbent optimal

Termination criterion

Remove problem S* from list

with formulation P_i
and dual bound Z°

y !

= If Z' < Z, prune by bound

IN

Solve LP relaxatiqn over P*
Dua_l bound Z' = LP value
x" (L P) =LP solution

!

< If P*is empty, prune by infeasibility
IN
Y —i
< It Z° < Z, prune by bound
IN
v If 2" (L P) integer, update primal bound
< Z = Z' and incumbent z* = 2" (LP)

Prune by optimality

IN

v Return two subproblems S i and S;

e with formulations Py and P;

and upper bounds Z°

Figure 710 Branch-and-bound flow chart.

Node selection
Pruning rule
Solving LP Relaxation

Pruning rule

Pruning rule

Pruning rule

Branching variable selection



0-1 Knapsack Problem

There is a budget b available for investment in projects during the coming year
and n projects are under consideration, where q; is the outlay for projectjand c; is
its expected return. The goal is to choose a set of projects so that the budget is not

exceeded and the expected return is maximized.

Definition of the variables. Definition of the objective function.

x; = 1 it projectj is selected, and x; = 0 otherwise. The expected return is maximized:

Definition of the constraints.
The budget cannot be exceeded:

n
D, aX <b.
i

The variables are 0-1:

n
max Z CiX;.
J=1

X; € {0,1} forj=1,...,n.




Hoos, Holger H. "Automated algorithm configuration and parameter
tuning." Autonomous search. Springer, Berlin, Heidelberg, 2011. 37-71.

Greedy 0-1 knapsack Exponent p; such that items are sorted w.r.t. cj/ aj’ :
an algorithm A with parameters p,, ..., p, that affect its behaviour,
pl = (Oal]

a space C of parameter settings (configurations), where ¢ € C specifies
values for py, ..., P,

n
a set of problem instances /, 2 Z CiX;
icl j=1
a performance metric m that measures the performance of A on instance
set [ for a given configuration c,

find a configuration ¢* € C such that running
algorithm A on instance set I maximizes metric m



Why tune an EXACT solver?

* Given sufficient time, solver is guaranteed to return global optimum (or
declare instance infeasible).

A. Small changes to exact algorithm can dramatically influence its running
time.

B. In practice, we have a limited time budget!

C. There is no universally superior (data-independent) “parameter setting”.



A. Small changes to exact algorithm can
dramatically influence its running time.

./ \@ N
O
0600@

From Integer Programming by Wolsey 7

2132—

213‘3—1

S




B. In practice, we have a limited time budget!

P(solve)

Each curve
Is for a
different
version of
an algorithm

10 100 1 000

run-time [CPU sec]

Adapted from Holger Hoos, CPSC536H at UBC: http://
www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/

mS-all.pdf
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C. There is no universally superior (data-
iIndependent) “parameter setting”.

Algorithm 5.1 Generic variable selection

Input:  Current subproblem () with an optimal LP solution & ¢ Xyp.

Output: An index j € I of an integer variable z; with fractional LP value %, ¢ Z.
1. Let ' ={j €l |x; ¢Z} be the set of branching candidates.
2. For all candidates j € F', calculate a score value s; € R.

3. Return an index j € F' with s; = maxger{sk}-

score(q, q+) = (1 — p) - min{q—, q+} + p - max{q-, C.l+}

From Tobias Achterberg, doctoral dissertation (2007)



C. There is no universally superior (data-

iIndependent) “parameter setting”.
score(q™,q") = (1 — p) - min{qg~,q"} + p-max{q ,q" }

test set min (u = 0)  weighted (u = %)
MIPLIB +26 < +23
CORAL 25 < +27
MILP 18 < +36
ENLIGHT 34 > —1
v ALU 88 > +85
£ rorp 72 > +6
ACC 43 = +29
FC 58 > —6
ARCSET 35 > 22
MIK +134 > +31
total +29 — +29
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Performance effect of
different branching score
functions for solving MIP
iInstances. The values
denote the percental
changes in the shifted
geometric mean of the
runtime compared to the
default score function.
Positive values represent a
deterioration, negative
values an improvement.

From Tobias Achterberg, doctoral dissertation (2007)



C. There is no universally superior (data-

iIndependent) “parameter setting”.
score(q™,q") = (1 — p) - min{qg~,q"} + p-max{q ,q" }

Expected tree size

o S—
o—

1L
a b

(c) The expected tree size plot
under the distribution D as a
function of u.
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Theorem (informal): There exist
distributions over MIP instances

such that setting 4 between a and
b gives small branch-and-bound
trees, but other values give
exponentially large trees

Balcan, Maria-Florina, et al. "Learning to branch." International
conference on machine learning. PMLR, 2018.



Why tune an EXACT solver?

* Given sufficient time, solver is guaranteed to return global optimum (or
declare instance infeasible).

A. Small changes to exact algorithm can dramatically influence its running
time.

B. In practice, we have a limited time budget!

C. There is no universally superior (data-independent) “parameter setting”.

How do we evaluate solver performance?
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Evaluating a MIP solver on a set of instances

e Total time
 Number of nodes In tree
e \What if solver did not terminate within time limit?

e QOther limitations of these metrics?

13



Primal Integral
A more comprehensive metric?

No incumbent at first

\ Solving this node LP...
1 <)

@ ... gives 1t
0.8 '
3 incumbent
Q o6 Running H at this node...
qe e
9 0.4 .. gives 2nd
(O incumbent
g 0.2 OPT found
- /
anl
0
0 2 4 6 8 10



Primal-Dual Integral

', Primal-dual gap integral

Think of this metric as: the
average optimality gap over time

lllustration from https://www.ecole.ai/2021/ml4co-competition/
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Instance Datasets for Learning in MIP
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Forest Harvesting

Natural Ressurcer R
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MANITOBA
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EDWARD
QUEBEC ; [SLAND
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FOREST REGIONS PRINCIPAL TREE SPECIES S _
BOREAL - PREDOMINANTLY FOREST - White spruce, black spruce, baksam fr, jack pine, white birch, trembiing aspen
BOREAL - FOREST AND BARREN (] Whte spruce, black spruce, tamarack
BoReAL - FOREST AND GRASS [l Tremtiing aspen witow
suparAne [l Engelmann spruce, alpine fir, ladgepole pine
montane [ Douglas-tir, lodgepale pne, pondercsa pne, trembing aspen
COAST - Yestem red cedar, westem hemicck, Srka spruce, Douglas-tir
cocumaian [ estem red cedar, westem hemicek, Douglas-tie
pecowous Il eeech mapie, biock wainut, hickary, ask
GREAT LAKES - ST.LAWRENCE - fled pne, eastern whita pine, easiem hamiock, yellow tirch, maple, oak
ACADLAN - Aed sprece, taksam fr, maple, yellow Birch
GRASSLANDS D Trembling aspen, wilow, bur cak
Tunoea [

T — N
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Forest Harvesting
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Forest Harvesting

17



Forest Harvesting

o
Goal: Harvest subset of parcels

to maximize revenue; pay cost

for harvesting adjacent parcels
M

17



Forest Harvesting

o
Goal: Harvest subset of parcels

to maximize revenue; pay cost
for harvesting adjacent parcels

maximize z i Y e

eV (i€l
subject to x; + x, — y; < 1

x € {0,1}", y e {0,1}"
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rorest Harvesting over Time/Space

& maX|m|zeZ riX; — Z an
- eV (i.j))eE
" resmiion GRS o) subject to x; X —y; <1
Yli ; X € {Oal}n’ )’ € {Oal}m

Quebec 1 Quebec 2 Manitoba

= e - " - K II‘
VAL P \ e o - NOWFOUNDLAND
47P x | Vo y i : - lv" o’
| K n V. A 1 ! L AS - o
\ ¥ ’ T~ ) " /! 0 " :-
 andlV - o Ry I3 ) 'x .
' P . &N ., A i s il .‘
- - o . ’ 4 ,._“ L d
SASKATCHEWAN - i e~ 4 "
MANITOBA N ] “
| J J‘- . ‘
' O N ‘ [SLAND
ONTARIO V&g w5 JEBN -

NEW N\ NOYA
_ BRUNSWICK ~ SCOTIA

SIS PN NETIENE [ Ontario 1 Ontario 2 Saskatchewan

BOREAL - PREDOMINANTLY FOREST - White spruce, black spruce, baksam fr, jack pine, whvie birch, trembiin n
BOREAL - FOREST AND BARREN ¥ihte spruce, black sgruce, tamarack
BoReAL - FOREST AND GRASS [ Tremeiing aspen witow
susarrne Engeimann spruce, alpine fir, lodgepole pine
montane [ Dougas-v, lodgepale pne, panderces pne, trembing aspen
coast I Westem red cedar, westem hemiock, Srka spruce Douglas-tr
covunaan Tl vestom red cedar, westem hemiock, Douglas-fir
pecovous [l peecn mapie, black wainut, heckary, ok
GREAT LAXES - ST LAWRENCE fed pne, eastern white ping, sasiem hamiock, yeflow tirch, maple, oak
ACADIAN - Aed spreca, balsam fr, maple, yellow Birch
GRASSLANDS D Trembling aspen, wilow, bur cal
TUNDRA

Revenue varies over time
— — Different instances, same problem
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Commonly used Problems

« Maximum Independent Set
 Generalized Independent Set
 Combinatorial Auctions

e Set Covering Problem

e Scheduling problems

19



M

https

L4CO Competition

.//www.ecole.ai/2021/ml4co-competition/

Problem benchmark 1: Balanced Iltem Placement

This problem deals with spreading items (e.g., files or processes) across containers (e.g., disks or machines) utilizing

L
L

nem evenly. Iltems can have multiple copies, but at most, one copy can be placed in asingle bin. T

hat can be moved is constrained, modeling the real-life situation of a live system for which some p

ne number of items

lacement already

exists. Each problem instance is modeled as a MILP, using a multi-dimensional multi-knapsack formulation. This

dataset contains 10000 training instances (pre-split into 9900 train and 100 valid instances).

Problem benchmark 2: Workload Apportionment

e

nis problem deals with apportioning workloads (e.g., data streams) across as few workers (e.g., servers) as possible.

ne apportionment is required to be robust to any one worker's failure. Each instance problem is modeled as a MILP,

using a bin-packing with apportionment formulation. This dataset contains 10000 training instances (pre-split into
9900 train and 100 valid instances).

From https://www.ecole.ai/2021/ml4co-competition/
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First Stop: Back to Configuration

IBM Knowledge Center

Managing sets of parameters Here are links to parameters controlling MIP strategies.

Parameter names
algorithm for initial MIP relaxation

Correspondence of parameters
between APIs
Benders strategy

Saving parameter settings to a file

in the C API _
MIP subproblem algorithm

- Topical list of parameters

Barrier MIP variable selection strategy

Benders algorithm

Distributed MIP

MIP strategy best bound interval

~ MIP MIP branching direction
_rgenena backtracking tolerance
........... MIP strategies
MIP cuts MIP dive strategy _
CPLEX Documentation
MIP tolerances MIP heuristic effort

MTE limitc



First Stop: Back to Configuration

_...MIP variable selection strategy Value Symbol Meanlng
-1 CPX VARSEL MININFEAS Branch on variable with minimum infeasibility
0 CPX VARSEL DEFAULT Automatic: let CPLEX choose variable to branch on;
default
1 CPX VARSEL MAXINFEAS Branch on variable with maximum infeasibility
2 CPX VARSEL PSEUDO Branch based on pseudo costs
3 CPX_VARSEL_STRONG Strong branching
4 CPX VARSEL PSEUDOREDUCED Branch based on pseudo reduced costs
MIP heuristic frequency Value Meaning

-1 None

0 Automatic: let CPLEX choose; default

Any positive integer Apply the periodic heuristic at this frequency

CPLEX Documentation
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ParamiLS ILS: Iterated Local Search =~

procedure ParamlILS

input target algorithm A, set of configurations C, set of problem instances I,
performance metric m;

parameters configuration co € C, integer r, integer s, probability pr;

objective function

global optimum

output configuration c*; -

solution space
ES

Cc .= (o,
fori:=1tordo
draw ¢ from C uniformly at random;

assess ¢ against ¢* based on performance of A on instances from I according to metric m; I N |'|:|a| Saml pl | ng phase

if ¢ found to perform better than ¢* then
c*=c;
end if;

end for;

c:=c";

perform subsidiary local search on c;
while termination condition not met do

¢ =c;
perform s random perturbation steps on ¢’ :
e form subsidia lacal seate on o Random perturbation + local search
assess ¢’ against ¢ based on performance of A on instances from I according to metric m; EV al U at|0n
if ¢’ found to perform better than ¢ then // acceptance criterion
update overall incumbent c¢*; ' '
update Update incumbent config.
end if;
with probability pr do
draw ¢ from C uniformly at random; Ran d Oom reStart'
end with probability;
end while; Hutter, Frank, et al. "ParamILS: an automatic
return c; ” algorithm configuration framework." Journal of
end ParamlILS

Artificial Intelligence Research 36 (2009): 267-306.



The first major configuration result for MIP

We present extensive evidence that ParamILS can find substantially improved parameter con-
figurations of complex and highly optimized algorithms. In particular, we apply our automatic
algorithm configuration procedures to the aforementioned commercial optimization tool CPLEX,
one of the most powerful, widely used and complex optimization algorithms we are aware of. As
stated 1n the CPLEX user manual (version 10.0, page 247), “A great deal of algorithmic develop-
ment effort has been devoted to establishing default ILOG CPLEX parameter settings that achieve
good performance on a wide variety of MIP models.” We demonstrate consistent improvements
over this default parameter configuration for a wide range of practically relevant instance distribu-
tions. In some cases, we were able to achieve an average speedup of over an order of magnitude
on previously-unseen test instances (Section 7). We believe that these are the first results to be
published on automatically configuring CPLEX or any other piece of software of comparable com-

plexity.

Hutter, Frank, et al. "ParamILS: an automatic
algorithm configuration framework." Journal of

24 Artificial Intelliaence Research 36 (2009): 267-306.



The first major configuration result for MIP

Algorithm | Parameter type | # parameters of type | # values considered | Total # configurations, |®|

SAPS Continuous 4 7 2401
Categorical 10 2-20
SPEAR Integer 4 53-8 8.34 - 10
Continuous 12 3-6

Categorical

Integer
Continuous

Table 2: Parameter overview for the algorithms we consider. More information on the pa-
rameters for each algorithm 1s given in the text. A detailed list of all pa-
rameters and the values we considered can be found in an online appendix at
http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/algorithms.html.

Hutter, Frank, et al. "ParamILS: an automatic
algorithm configuration framework." Journal of

25 Artificial Intelliaence Research 36 (2009): 267-306.
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Runtime [s], auto—tuned
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Runtime [s], default
(a) CPLEX—-REGIONS200.

72s vs 10.5s; no timeouts

10°

RN
o
w

Runtime [s], auto—tuned
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Runtime [s], default
(d) CPLEX-MIK.

28s vs 1.2s; no timeouts
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Runtime [s], auto—tuned

10710 10° 10' 10° 10° 10'
Runtime [s], default
(b) CPLEX—CONIC.SCH.

5.37s vs 2.39.5s; no timeouts

RN
o

EN
o
w

Runtime [s], auto—tuned

10710 10° 10" 10° 10° 10"
Runtime [s], default
(e) CPLEX—QP.

296s vs 234s; 0 vs 21 timeouts

E N Y E
o o Ow o

Runtime [s], auto—tuned
=

10710 10° 10' 10° 10° 10'
Runtime [s], default
(c) CPLEX—-CLS.

309s vs 21.5s; no timeouts

Runtime [s], auto-tuned

107 10" 10° 10" 10° 10° 10°
Runtime [s], default

(f) CpLEX—-QP, with test cutoff of 300

seconds.
81s vs 44s; 305 vs 150 timeouts

Hutter, Frank, et al. "ParamILS: an automatic
algorithm configuration framework." Journal of

20 Artificial Intelliaence Research 36 (2009): 267-306.



Algorithm Configuration: Pros and Cons

See IJCAI-20 Tutorial: https://www.automl.org/tutorial ac ijcai20/

Automated Algorithm Configuration

 ParamlILS [Hutter et al., JAIR 2009], SMAC [Hutter et
al., LION 2011]

» Key ldea: search over parameter configurations
» Stochastic Local Search or Bayesian Optimization

* Great for algorithms with many parameters

o 2-52x speedups for CPLEX on some problem
distributions [Hutter et al., CPAIOR 2010]

Limitations

Parameter domains

& starting values

: Configuration scenario "
Calls with & Problem

different instances

Confieurator Target —
& parameter g Solves
. algorithm
settings

Returns solution cost

Fig. 1. A configuration procedure (short: configurator) executes the target algorithm with specified
parameter settings on one or more problem instances, observes algorithm performance, and uses
this information to decide which subsequent target algorithm runs to perform. A configuration
scenario includes the target algorithm to be configured and a collection of instances.

 Operates at the instance-level, not the algorithm iteration-level
 Assumes human-designhed parameter space is rich enough
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Algorithm: LP-based Branch-and-Bound

Input: a MIP min{c'x | Ax < b,x e R",x; € ZVj € I}
Qutput: an optimal solution x*, z* = ¢ x*

1 Initialize: Queue of sub-problems (nodes) £ := {Np}, Best value z* := oo, Best
solution x* = ()

2 Terminate? If £L =0, return x*

28
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Algorithm: LP-based Branch-and-Bound

Input: a MIP min{c’x | Ax < b,x e R",x; € ZVj € I}

Output: an optimal solution x*, z* = CTX*

Initialize: Queue of sub-problems (nodes) £ := {Np}, Best value z* := oo, Best
solution x* = ()

Terminate? If £ = (), return x*

Select Node [what selection rule?]: Choose a node N; to process from L
Evaluate & Prune: Solve the LP relaxation of N; and prune node if applicable.
Add Cuts [which cuts to add?]: new constraints that tighten the formulation.

Run Heuristics [which heuristics to run?]|: try to find a better solution.

= W

Heuristic A
Heuristic B

Heurlstlc C

Feasible solutlon?
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Algorithm: LP-based Branch-and-Bound

Input: a MIP min{c'x | Ax < b,x e R",x; € ZVj € I}

Qutput: an optimal solution x*,z* := ¢’ x*

Initialize: Queue of sub-problems (nodes) £ := {Np}, Best value z* := oo, Best
solution x* = ()

Terminate? If £ = 0, return x*

Select Node [what selection rule?]: Choose a node N; to process from L

Evaluate & Prune: Solve the LP relaxation of N; and prune node if applicable.

Add Cuts [which cuts to add?]: new constraints that tighten the formulation.

Run Heuristics [which heuristics to run?]: try to find a better solution.

Select Branching Variable [what selection rule?|: Choose a variable that has fractional

value in the LP solution of N;. Create two new subproblems N;; and N;>. Go to line 2.

X7 — —
) Xk ;// \\<k 1
- o
xn? | \I | \I
\s/ \s/
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Algorithm: LP-based Branch-and-Bound

Input: a MIP min{c’x | Ax < b,x e R",x; € ZVj € I}

Qutput: an optimal solution x*, z* == ¢’ x*

Initialize: Queue of sub-problems (nodes) £ := {Np}, Best value z* := oo, Best
solution x* = ()

Terminate? If £ = (), return x*

Select Node [what selection rule?]: Choose a node N; to process from L

Evaluate & Prune: Solve the LP relaxation of N; and prune node if applicable.

Add Cuts [which cuts to add?]: new constraints that tighten the formulation.

Run Heuristics [which heuristics to run?]: try to find a better solution.

Select Branching Variable [what selection rule?]: Choose a variable that has fractional

value in the LP solution of N;. Create two new subproblems N;; and N;>. Go to line 2.
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ML Paradigms

Problem
definition

» Solution

Fig. 7. Machine learning acts alone to provide a solution to the problem.

This Is only viable for heuristics

Bengio, Yoshua, Andrea Lodi, and Antoine Prouvost.
“Machine learning for combinatorial optimization: a
methodological tour d’horizon.” European Journal of
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ML Paradigms

Problem
definition

ML

»  Decision

A OR » Solution

>

Fig. 8. The machine learning model is used to augment an operation research algorithm with valuable pieces of information.
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e.g., Algorithm Configuration

Bengio, Yoshua, Andrea Lodi, and Antoine Prouvost.
“Machine learning for combinatorial optimization: a
methodological tour d’horizon.” European Journal of
Operational Research



ML Paradigms

Problem
definition

OR » Solution

Decision

Fig. 9. The combinatorial optimization algorithm repeatedly queries the same ma-
chine learning model to make decisions. The machine learning model takes as input
the current state of the algorithm, which may include the problem definition.

34

ML is infused
within a bigger
optimization

algorithm

Bengio, Yoshua, Andrea Lodi, and Antoine Prouvost.
“Machine learning for combinatorial optimization: a
methodological tour d’horizon.” European Journal of
Operational Research



